winterkoninkje: shadowcrane (clean) (Default)

Continuing the thread from last time, let's move on from relations and consider a map of individual binary operations. In a lot of ways this is even simpler than the binary relations from last time, though the map requires a bit more explanation. This time, rather than having definitions at the top, they're given as labels on the arcs. Arcs in the same color denote the same property, dashed lines represent things you get for free, and black lines are for the odd things; all just like last time.

Most of the study of individual binary operations falls under group theory, which forms the core of this map. The one interesting thing here is that if you have at least monoid structure (i.e., have an identity element) then the uniqueness of inverses follows from having the presence of inverses. However, for semigroups which are not monoids, these two properties differ. This'll come up again next time when we start talking about rings and fields.

Off to the left we veer into lattices. And to the right we get the crazy stuff that comes from non-associative algebra. Quasigroups and loops are somewhat similar to groups in that they have an invertible structure, but unfortunately they don't have associativity. It turns out, there's a whole hierarchy of almost-but-not-quite-associative properties, which is shown on the second page. The strongest property you can get without being fully associative is Moufang, which can be phrased in four different ways. Below this we have left- and right-Bol (if you have both the Bols then you have Moufang). Below that we have alternativity where you choose two of three: left-alternativity, right-alternativity, and flexibility. Below that, of course, you can have just one of those properties. And finally, at the bottom, power associativity means that powers associate (and so "powers" is a well-formed notion) but that's it.

As I said, there's not a whole lot here, but I needed to bring this one up before getting into ring-like structures. This map is released under Creative Commons Attribution-ShareAlike 3.0. Any questions? Anything I missed? Anything that needs further explanation?

From:
Anonymous( )Anonymous This account has disabled anonymous posting.
OpenID( )OpenID You can comment on this post while signed in with an account from many other sites, once you have confirmed your email address. Sign in using OpenID.
User
Account name:
Password:
If you don't have an account you can create one now.
Subject:
HTML doesn't work in the subject.

Message:

If you are unable to use this captcha for any reason, please contact us by email at support@dreamwidth.org


 
Notice: This account is set to log the IP addresses of everyone who comments.
Links will be displayed as unclickable URLs to help prevent spam.

June 2017

S M T W T F S
    123
45678910
11121314151617
18192021 222324
252627282930 

Tags

Page generated 27 Jul 2017 06:34 pm
Powered by Dreamwidth Studios