winterkoninkje: shadowcrane (clean) (Default)

All this stuff is "well known", but I want to put it out there for folks who may not have encountered it, or not encountered it all together in one picture.

The Damas–Hindley–Milner type system (i.e., the type system that Algorithm W is inferring types for) is propositional logic extended with rank-1 second-order universal quantifiers. It is interesting because it is so particularly stable with respect to inference, decidability, etc. That is, we can come up with many other algorithms besides Algorithm W and they enjoy nice properties like the fact that adding type signatures won't cause inference to fail. (It's worth noting, that Algorithm W is DEXPTIME-complete; so while in practice it's often linear time, for pathological inputs it can take exponentially long. However, if we put a constant bound on the depth of nested let-bindings, then the upper bound becomes polynomial.)

The extension of DHM with rank-1 second-order existential quantifiers is strictly more powerful. It is interesting because it allows unrestricted use of both of the quantifiers in prenex position; thus, it is the limit/top of the alternating quantifier hierarchy (à la the arithmetical hierarchy) that starts with DHM. Surely there are other interesting properties here, but this system is understudied relative to the ones above and below. Edit: Although GHC gets by with encoding existentials away, it's worth noting that MLF allows existentials where the unpacking is implicit rather than requiring an "unseal" or case eliminator (Leijen 2006); and also that UHC does in fact offer first-class existentials (Dijkstra 2005).

The extension with rank-2 second-order universals (i.e., where the universal quantifier can appear to the left of one function arrow) is strictly more powerful still. Here we can encode rank-1 existentials, but my point in this whole post is to point out that rank-1 existentials themselves are strictly weaker than the rank-2 universals it takes to encode them! Also, one little-known fact: this type system is interesting because it is the last one in this progression where type inference is decidable (Kfoury & Wells 1993). The decidability of rank-2 universal quantification is part of the reason why GHC distinguishes between -XRank2Types vs -XRankNTypes. Alas, although inference is decidable —and thus of mathematical interest— it is not decidable in the same robust way that DHM is. That is, if we care about human factors like good error messages or not breaking when the user adds type signatures, then we don't get those properties here. Still, the fact that this system is at the cusp of decidable inference is important to know. Edit: Also of interest, this system has the same typeable terms as simply-typed λ-calculus with rank-2 intersection types, and the type inference problem here is fundamentally DEXPTIME-complete (Jim 1995).

Things keep alternating back and forth between existentials and universals of each rank; so far as I'm aware, none of these systems are of any particular interest until we hit the limit: rank-ω (aka: rank-N) second-order quantification. This type system is often called "System F", but that's a misnomer. It is important to differentiate between the syntactic system (i.e., actual System F) we're inferring types for, vs the type system (aka: propositional logic with second-order quantifiers) in which the inferred types live. That is, we can perfectly well have a syntactic system which doesn't have explicit type abstractions/applications but for which we still ascribe rank-ω types. It so happens that the type inference problem is undecidable for that syntactic system, but it was already undecidable way back at rank-3 so the undecidability isn't particularly novel.

winterkoninkje: shadowcrane (clean) (Default)

Meanwhile, back in math land... A couple-few months ago I was doing some work on apartness relations. In particular, I was looking into foundational issues, and into what an apartness-based (rather than equality-based) dependently-typed programming language would look like. Unfortunately, too many folks think "constructive mathematics" only means BHK-style intuitionistic logic— whereas constructive mathematics includes all sorts of other concepts, and they really should be better known!

So I started writing a preamble post, introducing the basic definitions and ideas behind apartnesses, and... well, I kinda got carried away. Instead of a blog post I kinda ended up with a short chapter. And then, well, panic struck. In the interests of Publish Ever, Publish Often, I thought I might as well share it: a brief introduction to apartness relations. As with my blog posts, I'm releasing it under Creative Commons Attribution-NonCommercial-NoDerivs 4.0; so feel free to share it and use it for classes. But, unlike the other columbicubiculomania files, it is not ShareAlike— since I may actually turn it into a published chapter someday. So do respect that. And if you have a book that needs some chapters on apartness relations, get in touch!

The intro goes a little something like this:


We often talk about values being "the same as" or "different from" one another. But how can we formalize these notions? In particular, how should we do so in a constructive setting?

Constructively, we lack a general axiom for double-negation elimination; therefore, every primitive notion gives rise to both strong (strictly positive) and weak (doubly-negated) propositions. Thus, from the denial of (weak) difference we can only conclude weak sameness. Consequently, in the constructive setting it is often desirable to take difference to be a primitive— so that, from the denial of strong difference we can in fact conclude strong sameness.

This ability "un-negate" sameness is the principal reason for taking difference to be one of our primitive notions. While nice in and of itself, it also causes the strong and weak notions of sameness to become logically equivalent (thm 1.4); enabling us to drop the qualifiers when discussing sameness.

But if not being different is enough to be considered the same, then do we still need sameness to be primitive? To simplify our reasoning, we may wish to have sameness be defined as the lack of difference. However, this is not without complications. Sameness has been considered a natural primitive for so long that it has accrued many additional non-propositional properties (e.g., the substitution principle). So, if we eliminate the propositional notion of primitive equality, we will need somewhere else to hang those coats.

The rest of the paper fleshes out these various ideas.

winterkoninkje: shadowcrane (clean) (Default)

It's been a while since I've posted under this tag, but I made a map of common normal modal logics based off the diagram in SEP. I don't have much to say about it, but I'm taking a course on the topic now so hopefully I'll have a bit more to say in the future.

While I was at it, I revised the map for binary relations (first published back here). Not too much has changed overall. I added the definition of "dense" (op-transitive) and "shift-reflexive" relations, since these show up in modal logics and so could be interesting elsewhere. I also tightened up the list of entailments to more explicitly capture the difference between the weak and strong definitions of (anti)symmetry. In the new versions, the entailments all hold in minimal logic assuming the substitution principle for equality (if x=y and P(x) then P(y), for any elements x and y and any property P)— except for those marked with a subscript I, which require intuitionistic logic. In addition, any of the entailments with strong (anti)symmetry as a premise can be strengthened to only require weak (anti)symmetry if we have decidable equality or are working in classical logic.

Edit 2013.10.12: Updated these two again. For the relations, just added a note that shift-reflexivity entails density. For the modal logics, added a bunch of new goodies and cleaned things up a bit.

RSS Atom

April 2019

S M T W T F S
 123456
78910111213
14151617181920
212223242526 27
282930    

Tags

Page generated 23 Apr 2025 05:34 pm
Powered by Dreamwidth Studios